3.530 \(\int \frac{\sin ^2(e+f x)}{(d \csc (e+f x))^{3/2}} \, dx\)

Optimal. Leaf size=103 \[ \frac{10 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{d \csc (e+f x)}}{21 d^2 f}-\frac{10 \cos (e+f x)}{21 d f \sqrt{d \csc (e+f x)}}-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}} \]

[Out]

(-2*d*Cos[e + f*x])/(7*f*(d*Csc[e + f*x])^(5/2)) - (10*Cos[e + f*x])/(21*d*f*Sqrt[d*Csc[e + f*x]]) + (10*Sqrt[
d*Csc[e + f*x]]*EllipticF[(e - Pi/2 + f*x)/2, 2]*Sqrt[Sin[e + f*x]])/(21*d^2*f)

________________________________________________________________________________________

Rubi [A]  time = 0.0737739, antiderivative size = 103, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 4, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.19, Rules used = {16, 3769, 3771, 2641} \[ \frac{10 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{2} \left (e+f x-\frac{\pi }{2}\right )\right |2\right ) \sqrt{d \csc (e+f x)}}{21 d^2 f}-\frac{10 \cos (e+f x)}{21 d f \sqrt{d \csc (e+f x)}}-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sin[e + f*x]^2/(d*Csc[e + f*x])^(3/2),x]

[Out]

(-2*d*Cos[e + f*x])/(7*f*(d*Csc[e + f*x])^(5/2)) - (10*Cos[e + f*x])/(21*d*f*Sqrt[d*Csc[e + f*x]]) + (10*Sqrt[
d*Csc[e + f*x]]*EllipticF[(e - Pi/2 + f*x)/2, 2]*Sqrt[Sin[e + f*x]])/(21*d^2*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3769

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Csc[c + d*x])^(n + 1))/(b*d*n), x
] + Dist[(n + 1)/(b^2*n), Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Integer
Q[2*n]

Rule 3771

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[(b*Csc[c + d*x])^n*Sin[c + d*x]^n, Int[1/Sin[c + d
*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{\sin ^2(e+f x)}{(d \csc (e+f x))^{3/2}} \, dx &=d^2 \int \frac{1}{(d \csc (e+f x))^{7/2}} \, dx\\ &=-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}}+\frac{5}{7} \int \frac{1}{(d \csc (e+f x))^{3/2}} \, dx\\ &=-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}}-\frac{10 \cos (e+f x)}{21 d f \sqrt{d \csc (e+f x)}}+\frac{5 \int \sqrt{d \csc (e+f x)} \, dx}{21 d^2}\\ &=-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}}-\frac{10 \cos (e+f x)}{21 d f \sqrt{d \csc (e+f x)}}+\frac{\left (5 \sqrt{d \csc (e+f x)} \sqrt{\sin (e+f x)}\right ) \int \frac{1}{\sqrt{\sin (e+f x)}} \, dx}{21 d^2}\\ &=-\frac{2 d \cos (e+f x)}{7 f (d \csc (e+f x))^{5/2}}-\frac{10 \cos (e+f x)}{21 d f \sqrt{d \csc (e+f x)}}+\frac{10 \sqrt{d \csc (e+f x)} F\left (\left .\frac{1}{2} \left (e-\frac{\pi }{2}+f x\right )\right |2\right ) \sqrt{\sin (e+f x)}}{21 d^2 f}\\ \end{align*}

Mathematica [A]  time = 0.113968, size = 70, normalized size = 0.68 \[ -\frac{\sqrt{d \csc (e+f x)} \left (26 \sin (2 (e+f x))-3 \sin (4 (e+f x))+40 \sqrt{\sin (e+f x)} F\left (\left .\frac{1}{4} (-2 e-2 f x+\pi )\right |2\right )\right )}{84 d^2 f} \]

Antiderivative was successfully verified.

[In]

Integrate[Sin[e + f*x]^2/(d*Csc[e + f*x])^(3/2),x]

[Out]

-(Sqrt[d*Csc[e + f*x]]*(40*EllipticF[(-2*e + Pi - 2*f*x)/4, 2]*Sqrt[Sin[e + f*x]] + 26*Sin[2*(e + f*x)] - 3*Si
n[4*(e + f*x)]))/(84*d^2*f)

________________________________________________________________________________________

Maple [C]  time = 0.137, size = 216, normalized size = 2.1 \begin{align*} -{\frac{\sqrt{2}}{21\,f \left ( -1+\cos \left ( fx+e \right ) \right ) \sin \left ( fx+e \right ) } \left ( 5\,i\sqrt{{\frac{-i \left ( -1+\cos \left ( fx+e \right ) \right ) }{\sin \left ( fx+e \right ) }}}\sin \left ( fx+e \right ) \sqrt{-{\frac{i\cos \left ( fx+e \right ) -\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}{\it EllipticF} \left ( \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}},{\frac{\sqrt{2}}{2}} \right ) \sqrt{{\frac{i\cos \left ( fx+e \right ) +\sin \left ( fx+e \right ) -i}{\sin \left ( fx+e \right ) }}}-3\,\sqrt{2} \left ( \cos \left ( fx+e \right ) \right ) ^{4}+3\,\sqrt{2} \left ( \cos \left ( fx+e \right ) \right ) ^{3}+8\,\sqrt{2} \left ( \cos \left ( fx+e \right ) \right ) ^{2}-8\,\sqrt{2}\cos \left ( fx+e \right ) \right ) \left ({\frac{d}{\sin \left ( fx+e \right ) }} \right ) ^{-{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sin(f*x+e)^2/(d*csc(f*x+e))^(3/2),x)

[Out]

-1/21/f*2^(1/2)*(5*I*(-I*(-1+cos(f*x+e))/sin(f*x+e))^(1/2)*sin(f*x+e)*(-(I*cos(f*x+e)-sin(f*x+e)-I)/sin(f*x+e)
)^(1/2)*EllipticF(((I*cos(f*x+e)+sin(f*x+e)-I)/sin(f*x+e))^(1/2),1/2*2^(1/2))*((I*cos(f*x+e)+sin(f*x+e)-I)/sin
(f*x+e))^(1/2)-3*2^(1/2)*cos(f*x+e)^4+3*2^(1/2)*cos(f*x+e)^3+8*2^(1/2)*cos(f*x+e)^2-8*2^(1/2)*cos(f*x+e))/(-1+
cos(f*x+e))/(d/sin(f*x+e))^(3/2)/sin(f*x+e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\left (d \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(d*csc(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate(sin(f*x + e)^2/(d*csc(f*x + e))^(3/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-\frac{{\left (\cos \left (f x + e\right )^{2} - 1\right )} \sqrt{d \csc \left (f x + e\right )}}{d^{2} \csc \left (f x + e\right )^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(d*csc(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

integral(-(cos(f*x + e)^2 - 1)*sqrt(d*csc(f*x + e))/(d^2*csc(f*x + e)^2), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin ^{2}{\left (e + f x \right )}}{\left (d \csc{\left (e + f x \right )}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)**2/(d*csc(f*x+e))**(3/2),x)

[Out]

Integral(sin(e + f*x)**2/(d*csc(e + f*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sin \left (f x + e\right )^{2}}{\left (d \csc \left (f x + e\right )\right )^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sin(f*x+e)^2/(d*csc(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(sin(f*x + e)^2/(d*csc(f*x + e))^(3/2), x)